SCIENCE  15/12/2021  Quantum Mechanics, the Mind-Body Problem and Negative Theology – Scientists and philosophers should keep trying to solve reality’s deepest riddles while accepting that they are unsolvable  by John Horgan

“Here’s how I distinguish science from philosophy. Science addresses questions that can be answered, potentially, through empirical investigation. Examples: What’s the best way to defeat COVID-19? What causes schizophrenia, and how should it be treated? Can nuclear power help us overcome climate change? What are the causes of war, and how can we end it?

Philosophy addresses questions that probably can’t be solved, now or ever. Examples (and these are of course debatable, some philosophers and scientists insist that science can answer all questions worth asking): Why is there something rather than nothingDoes free will existHow does matter make a mind? What does quantum mechanics mean?

This final question has absorbed me lately because of my ongoing effort to learn quantum mechanics. Quantum mechanics represents reality at its most fundamental level, that of particles darting through space. Supposedly. That’s why science writer and astrophysicist Adam Becker calls his recent book about quantum mechanics What Is Real?…”…  7/12/2021 Quantum entanglement: what it is, and why physicists want to harness it but don’t shut up – The cliché has it that the Copenhagen interpretation demands adherence without deep enquiry. That does physics a disservice  Jim Baggott

…”And here’s the rub. We never observe the wave function. If we push an electron through a narrow aperture, we imagine that it will diffract, spreading out in all directions in the space beyond as a wave (think of what happens to a rolling ocean wave as it squeezes through a gap in a harbour wall). If we now allow this electron to impinge on a screen covered with a photographic emulsion, we will find that the electron is detected, leaving a single bright spot at a specific point on the screen. Repeating this with more and more electrons will give us a diffraction pattern – a pattern possible only with waves – made up of a myriad of individual spots, each of which is possible only with particles. Where will the next spot appear? We have no way of knowing in advance. All we can do is use the wave function to calculate the probability that the next electron will be detected here, or there, or way over there.

What are we supposed to make of this? If we interpret the wave function realistically, as a tangible physical thing, we then have to figure out how it ‘collapses’ to produce a spot at only one location out of all the other probable locations on the screen. Such a collapse implies what Einstein in 1927 called ‘an entirely peculiar mechanism of action at a distance’ – an anathema of ghostly physical effects transmitted instantaneously across space with no apparent direct cause, now generally referred to as the ‘measurement problem’. For Einstein, the lack of any kind of physical explanation for how this is supposed to happen meant that something is missing; that quantum mechanics is in some way incomplete.

Bohr disagreed. He argued that in quantum mechanics we have hit a fundamental limit. What we observe is quantum behaviour as projected into our classical world of direct experience. As we cannot transcend this experience, we have to accept that the wave function has no physical significance beyond its relevance to the calculation of probabilities. We must be content with a ‘purely symbolic’ mathematical formalism that works. The wave function doesn’t collapse (and there’s no peculiar action at a distance) because it doesn’t actually exist, and so there is no measurement problem. In other words, all we can know is the electron-as-it-appears in different experimental arrangements. We can never know what the electron really is.

This is an empiricist, ‘antirealist’, or (to some) an ‘instrumentalist’ interpretation, which judges a theory to be largely meaningless except as an instrument to connect together our empirical experiences. Such an antirealist theory doesn’t necessarily deny the existence of an objective reality (we can happily continue to assume that the Moon is still there even if nobody looks at it or thinks about it), nor does it necessarily deny the reality of unobserved electrons, however we imagine them. But it does deny a direct and exact correspondence between the wave function and the things that the wave function purportedly describes. The formalism appears simply to encode our experiences of quantum phenomena in ways that allow us to calculate the probability that this or that will happen next. Quantum mechanics is complete, and we just need to get over it.”  12/2021  At subatomic level, the past can be the future: quantum researchers – Conventional theory that time can only move forward challenged by study, but the conditions for a ‘backward arrow’ are limited – The question of whether time can be reversed ‘one of the fundamental challenges’ of quantum physics – by Stephen Chen 11/2021 Why is quantum theory so strange? The weirdness could be in our heads
Quantum theory is peerless at explaining reality, but assaults our intuitions of how reality should be. It seems likely the fault lies with our intuitions – by Daniel Cossins

“PARTICLES that also act like waves; the “spooky action at a distance” of entanglement; those dead-and-alive cats. Small wonder people often trot out physicist Richard Feynman’s line that “nobody understands quantum mechanics”. With quantum theory, we have developed an exceedingly successful description of how fundamental reality works. It also amounts to a full-frontal assault on our intuitions about how reality should work.

Or does it? “It only seems strange to us because our immediate everyday experience of the world is so very limited,” says Sean Carroll at the California Institute of Technology. Intuitive-feeling classical physics is largely devoted to describing macroscopic objects – the things we see and feel directly in the world around us. “It should not be surprising that this breaks down when we push it into domains that we never experience directly,” says Carroll.

There is a big difference between seeming strange and being strange, too. “If quantum mechanics is right, it can’t truly be strange – it’s how nature works,” says Carroll. You can say something similar, after all, about other areas of physics, such as Albert Einstein’s space-and-time-warping theories of relativity. Their effects only truly kick in at close to light speed, or in humongous gravitational fields of the sort we never experience, so their picture of the world seems alien to us. For all that, there does seem to be something peculiarly alien about quantum theory. Take the way the mathematics of the theory allows us only to know the probability, on average, of what we will find …”…   11/2021  A New Theory for Systems That Defy Newton’s Third Law – In nonreciprocal systems, where Newton’s third law falls apart, “exceptional points” are helping researchers understand phase transitions and possibly other phenomena.  by Stephen Ornes

…”… But many systems exist and persist far from equilibrium. Perhaps the most glaring example is life itself. We’re kept out of equilibrium by our metabolism, which converts matter into energy. A human body that settles into equilibrium is a dead body. …  Vitelli said perhaps the most important aspect of the new work is that it reveals the limitations of the existing language that physicists and mathematicians use to describe systems in flux. When equilibrium is a given, he said, statistical mechanics frames the behavior and phenomena in terms of minimizing the energy — since no energy is added or lost. But when a system is out of equilibrium, “by necessity, you can no longer describe it with our familiar energy language, but you still have a transition between collective states,” he said. The new approach relaxes the fundamental assumption that to describe a phase transition you must minimize energy.  “When we assume there is no reciprocity, we can no longer define our energy,” Vitelli said, “and we have to recast the language of these transitions into the language of dynamics.” …”… 15/9/2021  Otherworldly ‘time crystal’ made inside Google quantum computer could change physics forever   The crystal is able to forever cycle between states without losing energy.   By Ben Turner

…”Researchers working in partnership with Google may have just used the tech giant’s quantum computer to create a completely new phase of matter — a time crystal.  With the ability to forever cycle between two states without ever losing energy, time crystals dodge one of the most important laws of physics — the second law of thermodynamics, which states that the disorder, or entropy, of an isolated system must always increase. These bizarre time crystals remain stable, resisting any dissolution into randomness, despite existing in a constant state of flux.  According to a research article posted July 28 to the preprint database arXiv, scientists were able to create the time crystal for roughly 100 seconds using qubits (quantum computing’s version of the traditional computer bit) inside the core of Google’s Sycamore quantum processor.”…

Related: 12 stunning quantum physics experiments  9/2021 The hard problem of consciousness is already beginning to dissolve – Science can solve the great mystery of consciousness – how physical matter gives rise to conscious experience – we just have to use the right approach, says neuroscientist Anil Seth  8/2021 New Physics Experiment Indicates There’s No Objective Reality
Turns out, reality is at odds with itself. Brad Bergan

The New Thermodynamic Understanding of Clocks – Studies of the simplest possible clocks have revealed their fundamental limitations — as well as insights into the nature of time itself.

The new perspective on clocks has already provided fresh fodder for discussions of time itself. “This line of work does grapple, in a fundamental way, with the role of time in quantum theory,” Yunger Halpern said.

Gerard Milburn, a quantum theorist at the University of Queensland in Australia who wrote a review paper last year about the research on clock thermodynamics, said, “I don’t think people appreciate just how fundamental it is.” …

In short, it’s the irreversible rise of entropy that makes timekeeping possible, while both periodicity and complexity enhance clock performance. But until 2019, it wasn’t clear how to verify the team’s equations, or what, if anything, simple quantum clocks had to do with the ones on our walls. …

One major aspect of the mystery of time is the fact that it doesn’t play the same role in quantum mechanics as other quantities, like position or momentum; physicists say there are no “time observables” — no exact, intrinsic time stamps on quantum particles that can be read off by measurements. Instead, time is a smoothly varying parameter in the equations of quantum mechanics, a reference against which to gauge the evolution of other observables.

Physicists have struggled to understand how the time of quantum mechanics can be reconciled with the notion of time as the fourth dimension in Einstein’s general theory of relativity, the current description of gravity. Modern attempts to reconcile quantum mechanics and general relativity often treat the four-dimensional space-time fabric of Einstein’s theory as emergent, a kind of hologram cooked up by more abstract quantum information. If so, both time and space ought to be approximate concepts.

The clock studies are suggestive, in showing that time can only ever be measured imperfectly. The “big question,” said Huber, is whether the fundamental limit on the accuracy of clocks reflects a fundamental limit on the smooth flow of time itself — in other words, whether stochastic events like collisions of coffee and air molecules are what time ultimately is.

“What we’ve done is to show that even if time is a perfect, classical and smooth parameter governing time evolution of quantum systems,” Huber said, “we would only be able to track its passage” imperfectly, through stochastic, irreversible processes. This invites a question, he said: “Could it be that time is an illusion and smooth time is an emergent consequence of us trying to put events into a smooth order? It is certainly an intriguing possibility that is not easily dismissed.”   8/2021  What God, Quantum Mechanics and Consciousness Have in Common
Theories that try to explain these big metaphysical mysteries fall short, making agnosticism the only sensible stance   By John Horgan

People I admire fault me for being too skeptical. One is the late religious philosopher Huston Smith, who called me “convictionally impaired.” Another is megapundit Robert Wright, an old friend, with whom I’ve often argued about evolutionary psychology and Buddhism. Wright once asked me in exasperation, “Don’t you believe anything?” Actually, I believe lots of things, for example, that war is bad and should be abolished.

But when it comes to theories about ultimate reality, I’m with Voltaire. “Doubt is not a pleasant condition,” Voltaire said, “but certainty is an absurd one.” Doubt protects us from dogmatism, which can easily morph into fanaticism and what William James calls a “premature closing of our accounts with reality.” …

If the problem of evil prevents me from believing in a loving God, then the problem of beauty keeps me from being an atheist like Weinberg. Hence, agnosticism

Quantum mechanics is science’s most precise, powerful theory of reality. It has predicted countless experiments, spawned countless applications. The trouble is, physicists and philosophers disagree over what it means, that is, what it says about how the world works …

As I point out in my recent book Mind-Body Problems, there are now a dizzying variety of theories of consciousness. Christof Koch has thrown his weight behind integrated information theory, which holds that consciousness might be a property of all matter, not just brains. …

 I try not to be dogmatic in my disbelief, and to be sympathetic toward those who, like Francis Collins, have found answers that work for them. Also, I get a kick out of inventive theories of everything, such as John Wheeler’s “it from bit” and Freeman Dyson’s principle of maximum diversity, even if I can’t embrace them.

I’m definitely a skeptic. I doubt we’ll ever know whether God exists, what quantum mechanics means, how matter makes mind. These three puzzles, I suspect, are different aspects of a single, impenetrable mystery at the heart of things. But one of the pleasures of agnosticism—perhaps the greatest pleasure—is that I can keep looking for answers and hoping that a revelation awaits just over the horizon. …”…

I air my agnostic outlook in my two most recent books, Mind-Body Problems, available for free online, and Pay Attention: Sex, Death, and Science.  8/2021  Can Consciousness Be Explained by Quantum Physics? Fascinating Research Takes Us a Step Closer to Finding Out

One of the most important open questions in science is how our consciousness is established. In the 1990s, long before winning the 2020 Nobel Prize in Physics for his prediction of black holes, physicist Roger Penrose teamed up with anesthesiologist Stuart Hameroff to propose an ambitious answer.

They claimed that the brain’s neuronal system forms an intricate network and that the consciousness this produces should obey the rules of quantum mechanics – the theory that determines how tiny particles like electrons move around. This, they argue, could explain the mysterious complexity of human consciousness.

Can Consciousness Be Explained by Quantum Physics? Fascinating Research Takes Us a Step Closer to Finding Out  7/2021   PHYSICISTS EXPLAIN HOW THE BRAIN MIGHT CONNECT TO THE QUANTUM REALM
Down the rabbit hole …    by Cristiane de Morais Smith

ONE OF THE MOST IMPORTANT open questions in science is how our consciousness is established. In the 1990s, long before winning the 2020 Nobel Prize in Physics for his prediction of black holes, physicist Roger Penrose teamed up with anesthesiologist Stuart Hameroff to propose an ambitious answer. They claimed that the brain’s neuronal system forms an intricate network and that the consciousness this produces should obey the rules of quantum mechanics — the theory that determines how tiny particles like electrons move around. This, they argue, could explain the mysterious complexity of human consciousness. …

We’re not yet able to measure the behavior of quantum fractals in the brain — if they exist at all. But advanced technology means we can now measure quantum fractals in the lab. In recent research involving a scanning tunneling microscope (STM), my colleagues at Utrecht and I carefully arranged electrons in a fractal pattern, creating a quantum fractal. When we then measured the wave function of the electrons, which describes their quantum state, we found that they too lived at the fractal dimension dictated by the physical pattern we’d made. In this case, the pattern we used on the quantum scale was the Sierpiński triangle, which is a shape that’s somewhere between one-dimensional and two-dimensional. …”…

This article was originally published on The Conversation by Cristiane de Morais Smith at Utrecht University. Read the original article here.  6/2021  Major Scientific Leap: Quantum Microscope Created That Can See the Impossible

…”The microscope is powered by the science of quantum entanglement, an effect Einstein described as “spooky interactions at a distance.” Professor Warwick Bowen … said it was the first entanglement-based sensor with performance beyond the best possible existing technology. … “Entanglement is thought to lie at the heart of a quantum revolution. We’ve finally demonstrated that sensors that use it can supersede existing, non-quantum technology. “This is exciting — it’s the first proof of the paradigm-changing potential of entanglement for sensing.”…”

KW Biochemistry Biotechnology Nanotechnology Optics  Quantum Physics 

Major Scientific Leap: Quantum Microscope Created That Can See the Impossible  18/6/2021  Famous Stephen Hawking theory about black holes confirmed – The areas of black holes are tied to the amount of disorder in the universe    By Ben Turner 

One of Stephen Hawking’s most famous theorems has been proven right, using ripples in space-time caused by the merging of two distant black holes.  The black hole area theorem, which Hawking derived in 1971 from Einstein’s theory of general relativity, states that it is impossible for the surface area of a black hole to decrease over time. This rule interests physicists because it is closely related to another rule that appears to set time to run in a particular direction: the second law of thermodynamics, which states that the entropy, or disorder, of a closed system must always increase. Because a black hole’s entropy is proportional to its surface area, both must always increase.  According to the new study, the researchers’ confirmation of the area law seems to imply that the properties of black holes are significant clues to the hidden laws that govern the universe. Oddly, the area law seems to contradict another of the famous physicist’s proven theorems: that black holes should evaporate over extremely long time scale, so figuring out the source of the contradiction between the two theories could reveal new physics.

Related: 8 ways you can see Einstein’s theory of relativity in real life  2020   Francesca Vidotto: The Quantum Properties of Space-Time  Theoretical physicist Francesca Vidotto on feminist epistemology, white holes, string theory, and her book (with Carlo Rovelli) on loop quantum gravity.

Francesca Vidotto: The Quantum Properties of Space-Time

quantamagazine  How to Rewrite the Laws of Physics in the Language of Impossibility  – Constructor theory grew out of work in quantum information theory. It aims to be broad enough to cover areas that can’t be described in the traditional ways of thinking, such as the physics of life and the physics of information. Chiara Marletto is trying to build a master theory — a set of ideas so fundamental that all other theories would spring from it. Her first step: Invoke the impossible.

For over a century, physicists having been rowing about the true nature of a quantum leap. There’s now an answer, and in true quantum form, everybody was a little bit correct… It actually describes one of the core tenets of quantum physics: that atoms have  discrete energy levels,  and electrons within an atom can jump from one energy level to the next, but cannot be observed between those specific levels. Titans of physics including Niels Bohr, who introduced the idea in 1913, Erwin Schrödinger, and Albert Einstein clashed over the specifics of these leaps – also known as quantum jumps –  particularly about whether they were instantaneous and whether their timing was random.Now, Zlatko Minev at Yale University and his colleagues have settled the debate. “If we zoom in to a very fine scale the jump is neither instantaneous nor as fully random as we thought it was,” Minev says.

The researchers achieved this by building a superconducting electrical circuit with quantum behaviour that makes it an analogue to atom with three energy levels: the ground state, which is the atom’s default state, a “bright” state connected to the ground state, and a “dark” state into which the atom can jump. They fired a beam of microwaves at the artificial atom to inject energy into the system. Generally, the atom was rapidly bouncing between the ground state and the bright state, emitting a photon every time it jumped from bright to ground. But if the atom absorbed a higher-energy photon from the beam, it would leap into the dark state. The dark state was more stable than the bright state, so the atom would stay there for longer without emitting any photons.

“The fact that such a quantum jump was seen in a superconducting circuit rather than an atom is indicative of the fact that we can control this superconducting circuit in ways that we cannot control natural atoms,” says William Oliver at the Massachusetts Institute of Technology. We should someday be able to do the same thing with real atoms, he says.

This control allowed the team to do something that Bohr and his contemporaries would have deemed impossible – controlling a quantum leap.

If, just after the jump had started, the researchers hit the atom with an electrical pulse, they could intercept it and send the atom back to the ground state – something which would not have been possible if quantum leaps were truly instantaneous and random. Instead, they found that the leaps took the same path between the two energy levels every time, so it was easy to predict how to bounce them back.

This shows that, as Schrödinger insisted, quantum leaps are not instantaneous – they actually take about four microseconds. “In a sense the jumps aren’t jumps,” says Minev. “If you look at these finer features, you can do things that maybe you thought you couldn’t do because of these little windows of predictability.”

This may eventually be useful to correct errors in quantum computing, Minev says. An unexpected quantum jump could mark a mistake in calculations, and this method might allow researchers to spot the start of the jump and account for the error, or even reverse it mid-leap. “This is a very important scientific result, and its relevance to quantum computers of the future is going to depend on what quantum computers of the future look like,” says Oliver.

Journal reference: NatureDOI: 10.1038/s41586-019-1287-z  – More on these topics:   – Read more: newscientist.comquantum-leaps-are-real-and-now-we-can-control-them – Read  2020 black-holes-are-portals-to-other-universes-according-to-new-quantum – by Bryan Nelson

According to Albert Einstein’s theory of general relativity, black holes are uninhabitable chasms of spacetime that end in a “singularity,” or a mass of infinite density. It’s a place so bleak that even the laws of physics break down there. But what if black holes aren’t so forbidding? What if they are instead some kind of intergalactic stargate, or maybe even a passageway into a whole other universe?

It may sound like the premise for a clever science-fiction movie, but new calculations by quantum physicists now suggest that the stargate idea might actually be the better theory. According to the startling new results, black holes do not culminate in a singularity. Rather, they represent “portals to other universes,” reports New Scientist.

innovationmanagement 2020 Quantum Computing, Zen Philosophy and Space-Time Gary Davis

The up-and-coming field of quantum computing, currently in a prototype phase, will probably be an innovation with exponential and wide-ranging impacts in the power and speed of information technology. There are some interesting parallels between the behavior of quantum computing particles, or qubits, and basic principles of Zen Buddhist philosophy. Like modern physics, this article employs a “space-time” concept of innovation, with implications for the process and intensity of new idea development within organizations.

In previous InnovationManagement articles applying Zen Buddhist (and related Daoist) philosophy to business innovation, I have stressed the importance of Zen’s holistic perspective towards natural phenomena. It is necessary to see the world of nature as it exists in all of its actual complexity. Such a perspective has been expanded over the centuries through major technological developments. Examples include the inventions of the telescope and microscope during the early 17th century. Today, in the 21st century, we stand at the threshold of another revolution in holistic vision—quantum computing.

In a notable interdisciplinary book, Matthieu Ricard and Trinh Xuan Thuan claim that there are “many ways in which science and Buddhism confirm and complement each other…” (The Quantum and the Lotus, 2001, 2004). You especially see this pattern in the quantum mechanics that underlie quantum information technology. The latter is being used “…to develop new kinds of computers and communications networks, and sensors for imaging and measuring things in novel ways” (Jeanne Whalen, “Seven Basic Questions About Quantum Technology, Answered,” The Washington Post, August 18, 2019). 3/2021 ‘Intriguing’ results from Cern challenge leading theory in physics
Physicists have found particles not behaving in the way they should according to the Standard Model.

the 25/3/2021 Cern’s naughty quarks chip away at standard physics 23/3/2021 Helgoland by Carlo Rovelli review – the mysteries of quantum mechanics – Having altered how we think about time, the physicist sets his sights on perhaps the most maddeningly difficult theory of all by Ian Thomson

Carlo Rovelli, the Italian theoretical physicist, is one of the great scientific explicators of our time. His wafer-thin essay collection, Seven Brief Lessons on Physics, sold more than 1m copies in English translation in 2015 and remains the world’s fastest-selling science book. In The Order of Time and Reality Is Not What It Seems, Rovelli illuminated the disquieting uncertainties of Einsteinian relativity, gravitational waves and other tentative physics. Nobody said that post-Newtonian physics was easy, but Rovelli’s gift is to bring difficult ideas down a level. His books continue a tradition of jargon-free popular scientific writing from Galileo to Darwin that disappeared in the academic specialisations of the past century. Only in recent years has science become, in publishing terms, popular and attractive again. Rovelli’s new book, Helgoland, attempts to explain the maddeningly difficult theory of quantum mechanics.


Stephen Hawking: Everything you need to know about the thesis that ‘broke the Internet’
By Colin Stuart, All About Space magazine 1 day ago

Your cheat sheet into the mind of one of the world’s greatest physicists.

Hawking’s PhD thesis relates to Albert Einstein’s General Theory of Relativity— the more accurate theory of gravity that replaced Isaac Newton’s original ideas. Newton said gravity was a pull between two objects. Einstein said that gravity is the result of massive objects warping the fabric of space and time (space-time) around them. According to Einstein, Earth orbits the sun because we’re caught in the depression our star makes in space-time.

Hawking applies the mathematics of general relativity to models of the birth of our universe (cosmologies). The earliest cosmologies had our universe as a static entity that had existed forever. This idea was so ingrained that when Einstein’s original calculations suggested a static universe was unlikely, he added a “cosmological constant” to the math in order to keep the universe static. He would later reportedly call it his “greatest blunder”.

Things began to change when Edwin Hubble made an important discovery. Hawking writes: “the discovery of the recession of the nebulae [galaxies] by Hubble led to the abandonment of static models in favor of ones in which we’re expanding.” …

Most of the early chapters of Hawking’s thesis are unremarkable — they don’t offer anything particularly revolutionary, and he even gets a few things wrong. However, in his final chapter the physicist drops a bombshell that will make his name and ignite a stellar career, during which he will become one of the most famous scientists on the planet.

He says that space-time can begin and end at a singularity, and what’s more he can prove it. A singularity is an infinitely small and infinitely dense point. It literally has zero size, and space and time both end (or begin) at a singularity. They had been predicted for decades, particularly when physicists started to apply Einstein’s General Theory of Relativity to the picture of an expanding universe.

If the universe is expanding today then it was smaller yesterday. Keep working back, and you find all matter in the universe condensed into a tiny, hot point — the moment of creation, a Big Bang. But just how do you prove that you can indeed get singularities in space-time? …

In one swoop, Hawking had proven that it is possible for space-time to begin as a singularity — that space and time in our universe could have had an origin. The Big Bang theory had just received a significant shot in the arm. Hawking started to write his PhD in October 1965, just 17 months after the discovery of the Cosmic Microwave Background— the leftover energy from the Big Bang. Together, these discoveries buried the Steady State Model for good.  5/2021 The human genome has finally been completely sequenced after 20 years  May 2021  By Michael Marshall 4/2021  A growing chorus of scientists and philosophers argue that free will does not exist. Could they be right?  by Oliver Burkeman

 …”Towards the end of a conversation dwelling on some of the deepest metaphysical puzzles regarding the nature of human existence, the philosopher Galen Strawson paused, then asked me: “Have you spoken to anyone else yet who’s received weird email?” He navigated to a file on his computer and began reading from the alarming messages he and several other scholars had received over the past few years. Some were plaintive, others abusive, but all were fiercely accusatory. “Last year you all played a part in destroying my life,” one person wrote. “I lost everything because of you – my son, my partner, my job, my home, my mental health. All because of you, you told me I had no control, how I was not responsible for anything I do, how my beautiful six-year-old son was not responsible for what he did … Goodbye, and good luck with the rest of your cancerous, evil, pathetic existence.” “Rot in your own shit Galen,” read another note, sent in early 2015. “Your wife, your kids your friends, you have smeared all there [sic] achievements you utter fucking prick,” wrote the same person, who subsequently warned: “I’m going to fuck you up.” And then, days later, under the subject line “Hello”: “I’m coming for you.” “This was one where we had to involve the police,” Strawson said. Thereafter, the violent threats ceased. …

Given how watertight the case against free will can appear, it may be surprising to learn that most philosophers reject it: according to a 2009 survey, conducted by the website PhilPapers, only about 12% of them are persuaded by it. And the disagreement can be fraught, partly because free will denial belongs to a wider trend that drives some philosophers spare – the tendency for those trained in the hard sciences to make sweeping pronouncements about debates that have raged in philosophy for years, as if all those dull-witted scholars were just waiting for the physicists and neuroscientists to show up. In one chilly exchange, Dennett paid a backhanded compliment to Harris, who has a PhD in neuroscience, calling his book “remarkable” and “valuable” – but only because it was riddled with so many wrongheaded claims: “I am grateful to Harris for saying, so boldly and clearly, what less outgoing scientists are thinking but keeping to themselves.”

What’s still more surprising, and hard to wrap one’s mind around, is that most of those who defend free will don’t reject the sceptics’ most dizzying assertion – that every choice you ever make might have been determined in advance. So in the fruit bowl example, a majority of philosophers agree that if you rewound the tape of history to the moment of choice, with everything in the universe exactly the same, you couldn’t have made a different selection. That kind of free will is “as illusory as poltergeists”, to quote Dennett. What they claim instead is that this doesn’t matter: that even though our choices may be determined, it makes sense to say we’re free to choose. That’s why they’re known as “compatibilists”: they think determinism and free will are compatible. (There are many other positions in the debate, including some philosophers, many Christians among them, who think we really do have “ghostly” free will; and others who think the whole so-called problem is a chimera, resulting from a confusion of categories, or errors of language.)

To those who find the case against free will persuasive, compatibilism seems outrageous at first glance. How can we possibly be free to choose if we aren’t, in fact, you know, free to choose? But to grasp the compatibilists’ point, it helps first to think about free will not as a kind of magic, but as a mundane sort of skill – one which most adults possess, most of the time. As the compatibilist Kadri Vihvelin writes, “we have the free will we think we have, including the freedom of action we think we have … by having some bundle of abilities and being in the right kind of surroundings.” The way most compatibilists see things, “being free” is just a matter of having the capacity to think about what you want, reflect on your desires, then act on them and sometimes get what you want. When you choose the banana in the normal way – by thinking about which fruit you’d like, then taking it – you’re clearly in a different situation from someone who picks the banana because a fruit-obsessed gunman is holding a pistol to their head; or someone afflicted by a banana addiction, compelled to grab every one they see. In all of these scenarios, to be sure, your actions belonged to an unbroken chain of causes, stretching back to the dawn of time. But who cares? The banana-chooser in one of them was clearly more free than in the others.

“Harris, Pinker, Coyne – all these scientists, they all make the same two-step move,” said Eddy Nahmias, a compatibilist philosopher at Georgia State University in the US. “Their first move is always to say, ‘well, here’s what free will means’” – and it’s always something nobody could ever actually have, in the reality in which we live. “And then, sure enough, they deflate it. But once you have that sort of balloon in front of you, it’s very easy to deflate it, because any naturalistic account of the world will show that it’s false.”

Daniel Dennett in Stockholm, Sweden.
Daniel Dennett in Stockholm, Sweden. Photograph: Ibl/Rex/Shutterstock

Consider hypnosis. A doctrinaire free will sceptic might feel obliged to argue that a person hypnotised into making a particular purchase is no less free than someone who thinks about it, in the usual manner, before reaching for their credit card. After all, their idea of free will requires that the choice wasn’t fully determined by prior causes; yet in both cases, hypnotised and non-hypnotised, it was. “But come on, that’s just really annoying,” said Helen Beebee, a philosopher at the University of Manchester who has written widely on free will, expressing an exasperation commonly felt by compatibilists toward their rivals’ more outlandish claims. “In some sense, I don’t care if you call it ‘free will’ or ‘acting freely’ or anything else – it’s just that it obviously does matter, to everybody, whether they get hypnotised into doing things or not.”

Granted, the compatibilist version of free will may be less exciting. But it doesn’t follow that it’s worthless. Indeed, it may be (in another of Dennett’s phrases) the only kind of “free will worth wanting”. You experience the desire for a certain fruit, you act on it, and you get the fruit, with no external gunmen or internal disorders influencing your choice. How could a person ever be freer than that?

Thinking of free will this way also puts a different spin on some notorious experiments conducted in the 80s by the American neuroscientist Benjamin Libet, which have been interpreted as offering scientific proof that free will doesn’t exist. Wiring his subjects to a brain scanner, and asking them to flex their hands at a moment of their choosing, Libet seemed to show that their choice was detectable from brain activity 300 milliseconds before they made a conscious decision. (Other studies have indicated activity up to 10 seconds before a conscious choice.) How could these subjects be said to have reached their decisions freely, if the lab equipment knew their decisions so far in advance? But to most compatibilists, this is a fuss about nothing. Like everything else, our conscious choices are links in a causal chain of neural processes, so of course some brain activity precedes the moment at which we become aware of them.

From this down-to-earth perspective, there’s also no need to start panicking that cases like Charles Whitman’s might mean we could never hold anybody responsible for their misdeeds, or praise them for their achievements. (In their defence, several free will sceptics I spoke to had their reasons for not going that far, either.) Instead, we need only ask whether someone had the normal ability to choose rationally, reflecting on the implications of their actions. We all agree that newborn babies haven’t developed that yet, so we don’t blame them for waking us in the night; and we believe most non-human animals don’t possess it – so few of us rage indignantly at wasps for stinging us. Someone with a severe neurological or developmental impairment would surely lack it, too, perhaps including Whitman. But as for everyone else: “Bernie Madoff is the example I always like to use,” said Nahmias. “Because it’s so clear that he knew what he was doing, and that he knew that what he was doing was wrong, and he did it anyway.” He did have the ability we call “free will” – and used it to defraud his investors of more than $17bn.

To the free will sceptics, this is all just a desperate attempt at face-saving and changing the subject – an effort to redefine free will not as the thing we all feel, when faced with a choice, but as something else, unworthy of the name. “People hate the idea that they aren’t agents who can make free choices,” Jerry Coyne has argued. Harris has accused Dennett of approaching the topic as if he were telling someone bent on discovering the lost city of Atlantis that they ought to be satisfied with a trip to Sicily. After all, it meets some of the criteria: it’s an island in the sea, home to a civilisation with ancient roots. But the facts remain: Atlantis doesn’t exist. And when it felt like it wasn’t inevitable you’d choose the banana, the truth is that it actually was.

It’s tempting to dismiss the free will controversy as irrelevant to real life, on the grounds that we can’t help but feel as though we have free will, whatever the philosophical truth may be. I’m certainly going to keep responding to others as though they had free will: if you injure me, or someone I love, I can guarantee I’m going to be furious, instead of smiling indulgently on the grounds that you had no option. In this experiential sense, free will just seems to be a given.

But is it? When my mind is at its quietest – for example, drinking coffee early in the morning, before the four-year-old wakes up – things are liable to feel different. In such moments of relaxed concentration, it seems clear to me that my intentions and choices, like all my other thoughts and emotions, arise unbidden in my awareness. There’s no sense in which it feels like I’m their author. Why do I put down my coffee mug and head to the shower at the exact moment I do so? Because the intention to do so pops up, caused, no doubt, by all sorts of activity in my brain – but activity that lies outside my understanding, let alone my command. And it’s exactly the same when it comes to those weightier decisions that seem to express something profound about the kind of person I am: whether to attend the funeral of a certain relative, say, or which of two incompatible career opportunities to pursue. I can spend hours or even days engaged in what I tell myself is “reaching a decision” about those, when what I’m really doing, if I’m honest, is just vacillating between options – until at some unpredictable moment, or when an external deadline forces the issue, the decision to commit to one path or another simply arises.

This is what Harris means when he declares that, on close inspection, it’s not merely that free will is an illusion, but that the illusion of free will is itself an illusion: watch yourself closely, and you don’t even seem to be free. “If one pays sufficient attention,” he told me by email, “one can notice that there’s no subject in the middle of experience – there is only experience. And everything we experience simply arises on its own.” This is an idea with roots in Buddhism, and echoed by others, including the philosopher David Hume: when you look within, there’s no trace of an internal commanding officer, autonomously issuing decisions. There’s only mental activity, flowing on. Or as Arthur Rimbaud wrote, in a letter to a friend in 1871: “I am a spectator at the unfolding of my thought; I watch it, I listen to it.”

There are reasons to agree with Saul Smilansky that it might be personally and societally detrimental for too many people to start thinking in this way, even if it turns out it’s the truth. (Dennett, although he thinks we do have free will, takes a similar position, arguing that it’s morally irresponsible to promote free-will denial.) In one set of studies in 2008, the psychologists Kathleen Vohs and Jonathan Schooler asked one group of participants to read an excerpt from The Astonishing Hypothesis by Francis Crick, co-discoverer of the structure of DNA, in which he suggests free will is an illusion. The subjects thus primed to doubt the existence of free will proved significantly likelier than others, in a subsequent stage of the experiment, to cheat in a test where there was money at stake. Other research has reported a diminished belief in free will to less willingness to volunteer to help others, to lower levels of commitment in relationships, and lower levels of gratitude.

Unsuccessful attempts to replicate Vohs and Schooler’s findings have called them into question. But even if the effects are real, some free will sceptics argue that the participants in such studies are making a common mistake – and one that might get cleared up rather rapidly, were the case against free will to become better known and understood. Study participants who suddenly become immoral seem to be confusing determinism with fatalism – the idea that if we don’t have free will, then our choices don’t really matter, so we might as well not bother trying to make good ones, and just do as we please instead. But in fact it doesn’t follow from our choices being determined that they don’t matter. It might matter enormously whether you choose to feed your children a diet rich in vegetables or not; or whether you decide to check carefully in both directions before crossing a busy road. It’s just that (according to the sceptics) you don’t get to make those choices freely.

In any case, were free will really to be shown to be nonexistent, the implications might not be entirely negative. It’s true that there’s something repellent about an idea that seems to require us to treat a cold-blooded murderer as not responsible for his actions, while at the same time characterising the love of a parent for a child as nothing more than what Smilansky calls “the unfolding of the given” – mere blind causation, devoid of any human spark. But there’s something liberating about it, too. It’s a reason to be gentler with yourself, and with others. For those of us prone to being hard on ourselves, it’s therapeutic to keep in the back of your mind the thought that you might be doing precisely as well as you were always going to be doing – that in the profoundest sense, you couldn’t have done any more. And for those of us prone to raging at others for their minor misdeeds, it’s calming to consider how easily their faults might have been yours. (Sure enough, some research has linked disbelief in free will to increased kindness.)

Why can’t the world’s greatest minds solve the mystery of consciousness?
Read more

Harris argues that if we fully grasped the case against free will, it would be difficult to hate other people: how can you hate someone you don’t blame for their actions? Yet love would survive largely unscathed, since love is “the condition of our wanting those we love to be happy, and being made happy ourselves by that ethical and emotional connection”, neither of which would be undermined. And countless other positive aspects of life would be similarly untouched. As Strawson puts it, in a world without a belief in free will, “strawberries would still taste just as good”.

Those early-morning moments aside, I personally can’t claim to find the case against free will ultimately persuasive; it’s just at odds with too much else that seems obviously true about life. Yet even if only entertained as a hypothetical possibility, free will scepticism is an antidote to that bleak individualist philosophy which holds that a person’s accomplishments truly belong to them alone – and that you’ve therefore only yourself to blame if you fail. It’s a reminder that accidents of birth might affect the trajectories of our lives far more comprehensively than we realise, dictating not only the socioeconomic position into which we’re born, but also our personalities and experiences as a whole: our talents and our weaknesses, our capacity for joy, and our ability to overcome tendencies toward violence, laziness or despair, and the paths we end up travelling. There is a deep sense of human fellowship in this picture of reality – in the idea that, in our utter exposure to forces beyond our control, we might all be in the same boat, clinging on for our lives, adrift on the storm-tossed ocean of luck. “

Does a chair exist if nobody sits on it? Relational quantum mechanics says ‘NO!’

But you also expect the book has its own independent existence behind those appearances. So when you put the book down on the coffee table and walk into the kitchen, or leave your house to go to work, you expect the book still looks, feels, and smells just as it did when you were holding it.

Expecting objects to have their own independent existence – independent of us, and any other objects – is actually a deep-seated assumption we make about the world. This assumption has its origin in the scientific revolution of the 17th century and is part of what we call the mechanistic worldview. According to this view, the world is like a giant clockwork machine whose parts are governed by set laws of motion.

This view of the world is responsible for much of our scientific advancement since the 17th century. But as Italian physicist Carlo Rovelli argues in his new book Helgoland, quantum theory – the physical theory that describes the universe at the smallest scales – almost certainly shows this worldview to be false. Instead, Rovelli argues we should adopt a “relational” worldview.

What does it mean to be relational?

During the scientific revolution, the English physics pioneer Isaac Newton and his German counterpart Gottfried Leibniz disagreed on the nature of space and time.

Newton claimed space and time acted like a “container” for the contents of the universe. That is, if we could remove the contents of the universe – all the planets, stars, and galaxies – we would be left with empty space and time. This is the “absolute” view of space and time.

Leibniz, on the other hand, claimed that space and time were nothing more than the sum total of distances and durations between all the objects and events of the world. If we removed the contents of the universe, we would remove space and time also. This is the “relational” view of space and time: they are only the spatial and temporal relations between objects and events. The relational view of space and time was a key inspiration for Einstein when he developed general relativity.

Rovelli makes use of this idea to understand quantum mechanics. He claims the objects of quantum theory, such as a photon, electron, or other fundamental particles, are nothing more than the properties they exhibit when interacting with – in relation to – other objects.

These properties of a quantum object are determined through experiments and include things like the object’s position, momentum, and energy. Together they make up an object’s state.

According to Rovelli’s relational interpretation, these properties are all there is to the object: there is no underlying individual substance that “has” the properties.


So how does this help us understand quantum theory?

Consider the well-known quantum puzzle of Schrödinger’s cat. We put a cat in a box with some lethal agent (like a vial of poison gas) triggered by a quantum process (like the decay of a radioactive atom), and we close the lid.

The quantum process is a chance event. There is no way to predict it, but we can describe it in a way that tells us the different chances of the atom decaying or not in some period of time. Because the decay will trigger the opening of the vial of poison gas and hence the death of the cat, the cat’s life or death is also a purely chance event.

According to orthodox quantum theory, the cat is neither dead nor alive until we open the box and observe the system. A puzzle remains concerning what it would be like for the cat, exactly, to be neither dead nor alive.

But according to the relational interpretation, the state of any system is always in relation to some other system. So the quantum process in the box might have an indefinite outcome in relation to us, but have a definite outcome for the cat.

So it is perfectly reasonable for the cat to be neither dead nor alive for us, and at the same time to be definitely dead or alive itself. One fact of the matter is real for us, and one fact of the matter is real for the cat. When we open the box, the state of the cat becomes definite for us, but the cat was never in an indefinite state for itself.

In the relational interpretation, there is no global, “God’s eye” view of reality.

What does this tell us about reality?

Rovelli argues that, since our world is ultimately quantum, we should heed these lessons. In particular, objects such as your favorite book may only have their properties in relation to other objects, including you.

Thankfully, that also includes all other objects, such as your coffee table. So when you do go to work, your favorite book continues to appear is it does when you were holding it. Even so, this is a dramatic rethinking of the nature of reality.

On this view, the world is an intricate web of interrelations, such that objects no longer have their own individual existence independent from other objects – like an endless game of quantum mirrors. Moreover, there may well be no independent “metaphysical” substance constituting our reality that underlies this web.

As Rovelli puts it:

We are nothing but images of images. Reality, including ourselves, is nothing but a thin and fragile veil, beyond which … there is nothing.The Conversation

This article by Peter Evans, ARC Discovery Early Career Research Fellow, The University of Queensland is republished from The Conversation under a Creative Commons license. Read the original article.